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A two-equat ion model of turbulent heat transfer has been devised along the lines of the 
successful q - (  model of the turbulent velocity field. The new variables are the square root 
of the temperature variance and its dissipation rate. These variables are attractive for 
eddy-diffusivity calculations, because their variation wi th distance y from the wal l  is l inear 
in y when y --) 0. This feature in the q - (  model for the eddy-viscosity leads to economical 
computat ions of good accuracy. The new heat transfer model has been calibrated wi th data 
from channel and boundary-layer f lows and is applied here to the computation of heat 
transfer in the stagnation region of an impinging jet. The results compare very favourably 
wi th those based upon the assumption of a constant turbulent Prandtl number. This 
quanti ty is obtained as an output from the calculations instead of being an input to them. 
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Introduction 

The k - e  turbulence model owes its pre-eminent  position in 
computational fluid dynamics to the discovery by Spalding (1969) 
and his contemporaries that  there was no need to modify the 
length-scale equation (in this case the e-equation) in order to 
handle wall flows, provided always that  the problem of resolving 
the low Reynolds number  turbulence close to the wall was 
avoided by the use of "wall functions." For this reason, the 
promising k - W  and k - k L  models of Gibson and Spalding (1972) 
and Ng and Spalding (1972) were discarded in favour of a related 
form which appeared at the time to be computationally more 
convenient. Although the high-Reynolds-number k e model has 
given good service over the years, it is now difficult to justify the 
continued use of wall functions, particularly in applications where 
the existence of universal wall laws is doubtful and as arguments 
for computational economy become weaker. Wall functions en- 
dure mainly because the problem of integrating the turbulence 
equations to the wall has yet to be satisfactorily solved. The 
choice of e as a variable adds to the difficulties: it has no natural 
boundary condition at the wall, so that one must be derived from 
assumed limiting hehaviour of the turbulence fluctuations as 
y ~ 0. Moreover, if the assumed wall value e w is subtracted to 
form a new variable, k = e - e w, which is zero at the wall, this 
quantity is found to vary as y2 as y ~ 0, thus necessitating the 
use of an excessively fine grid for computations through the 
sublayers, as well as the need to calculate spatial derivatives of 
the turbulence energy k. Other  "wall" terms are also needed, 
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whose exact form is uncertain, and which destroy the attractive 
simplicity of the high-Reynolds-number model, which is one of 
its chief merits. There is, in short, no advantage in persisting with 
the e-equation except the many years of experience built into it, 
much of which may still be employed in the formulation of more 
useful equations. 

Alternatives include equations for the turbulent vorticity co =- 
e l k  and its reciprocal, the time-scale -r ~ k / e .  And there are 
other variables fitting the general form of k " e  n. Spalding (1991) 
has pointed out that  the question of which of these is best has 
never been seriously investigated. We have found that there is 
much to be said for the use of new variable ~ =- ~/2~/k especially 
when the k-equation is replaced by one for q---(k. ~ is then 
identified as the dissipation rate of q. Both variables are zero at 
the wall and are well behaved in that they vary linearly with 
distance from it for small y. ~ lies between co and e in the 
progression c o - g / k ,  ~ =-k/2(k and ~, meeting the empirical 
condition that for simplicity in the high-Reynolds number  form 
the exponent of k in the general variable above should be unity. 

~ ~/(coe) apparently acquires the merits of the earlier models 
without, it seems, many of the defects. The motivation for a new 
model was computational efficiency. The improved accuracy 
shown in the attached and separated flow calculations by Gibson 
and Dafa'Alla (1995) and Gibson and Harper  (1995) was an 
unexpected bonus. 

In heat transfer calculations with two-equation models the 
eddy-diffusivity is usually related to the eddy-viscosity via a 
turbulent Prandtl number  Pr t ~ vt/c~ t, taken to be a constant 
= 0.9 for wall flows. There is then no need to define the 
eddy-diffusivity in terms of the variables of the scalar field: by 
analogy with k and e, the (half) variance k o - =  0 2 / 2  and its 
dissipation rate co. Even when the equations are integrated to 
the wall the constant Pr t assumption may still be useful in some 
cases, but it cannot  be relied upon generally. In particular it 
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breaks down for the computation of heat transfer at a stagnation 
point, as in the reattaching flow downstream of a sudden pipe 
expansion, or at the impingement point of a jet on a plate. In 
these regions, the calculated heat transfer rates may exceed the 
actual values by a large margin unless they are reduced by 
correction factors like that of Yap (Craft et al. 1993). The 
alternative is to detach the eddy-diffusivity a t from its fixed ratio 
to the eddy-viscosity, and model it separately with the aid of the 
scalar-field equations. 

In integrating the equations for ko and eo to the wall, the 
difficulty arises, as before, in the specification of the correct 
boundary conditions for these variables. Examination of the 
limiting behaviour at the wall shows that the possibility of a 
non-zero wall value of ko cannot be excluded. Sommer et al. 
(1993) provide an interesting discussion of this point. If, however, 
ko is zero at the wall, its variation with y2, like that of k, will still 
be inconvenient. It is proposed, therefore, to replace the equa- 
tion for ko by one for qo --- k ~ ,  the counterpart of q, and the 
equation for eo by one for ~a, the dissipation rate of qa. These 
variables, like q and 4, possess the useful property of varying 
linearly at the wall (as long as the wall temperature fluctuations 
can be neglected) and thereby further facilitate economical com- 
putations. The ~ o equation is obtained by transforming a suitable 
modelled eo equation in the same way as Gibson and Dafa'Alla 
(1995) derived in X-equation from the e-equation. The presence 
of both velocity and temperature time scales, k / e  and k o / % ,  in 
the equations is a complicating factor. A variety of composite 
scales have been suggested by different authors. In this, as in the 
use of damping functions for integration to the wall, we have 
drawn upon the experience of others in k~-eo modelling, 
adapted as required to the q~-~o format. 

The impinging axisymmetric jet is an interesting flow in 
practice as well as providing a demanding test case for turbu- 
lence modelling. Craft et al. (1993) summarise the main flow 
characteristics as: nearly irrotational normal straining in the 
vicinity of the stagnation point, strong streamline curvature 
nearer the free edge and, in the flow parallel to the plate, wall-jet 
behaviour in which the zero of the shear stress does not coincide 
with the zero of the velocity gradient. Because of this complexity, 
the more recent attempts at flow prediction have chiefly used 
second-moment closures. No doubt the effects of strong stream- 
line curvature are best handled at a superior level of closure, as 
is the development of the wall jet, but we are concerned here 
primarily with the prediction of heat transfer in the vicinity of 
the stagnation point where, according to Craft et al., "the most 
important factor in determining the local Nusselt number is the 
distribution of turbulent flux across the sublayer or, when an 
eddy-viscosity model is used in this region, the distribution of 
turbulent thermal diffusivity." One of the four models assessed 
by Craft et al. was the Launder and Sharma (1974) low-Reynolds 
number k - e  model with uniform turbulent Prandtl number and 
incorporating the Yap correction in order to prevent high pre- 
dicted turbulence levels causing excessive heat flux in the stagna- 
tion region. Dianat et al. (1995) find that for this flow a second- 
moment closure is generally superior to the "standard" k - e  
model with wall functions. 

from the definition: 

e = k + 2 v  cgxj l [ 3xJ ] (1) 

This calculation is unnecessary in the q-~  model. 
The first steps is to derive the q-equation from the modelled 

k-equation as: 

oq   qtOq] ,2, Ui 3x i Oxj v + Ox--~j 

where Q = - P / 2 q  and P is the production rate of k. Note, 
however, that the equations are not exact transforms of each 
other, because the turbulent transport terms do not exactly 
correspond. The assumption of simple gradient diffusion in each 
case necessarily involves the neglect of second-order terms in the 
transformation and thus introduces slightly different physics. It is 
argued that the gradient-diffusion assumption for q is no less 
reasonable than it is for k. Wilcox (1993) discusses this point in 
connexion with differences between the k - e  and k-o~ models. 

The ~ equation is obtained by transforming the k- and e- 
equations as follows: 

Uioxi  1) q - - -  at- (C~lf¢lQ-C~2f{2{)+t ~' (3) o~ 

in which C~l, C~2 , f~l, and f~2 are constants and damping 
functions which are related to terms in the e-equation by C~f~ = 
(2C~f~ - 1). The assumption of gradient diffusion for the turbu- 
lent transport of ~ again involves the justifiable neglect of 
second-order terms in the transformation with consequence small 
changes in the physics. In Equation 3 ~ '  accounts for secondary 
mean-flow production of ~ which, for the time being, is modelled 
as in Launder and Sharma (1974): 

q Oxj3xk ] ~ OxjOx k ] 
(4) 

The eddy-viscosity is: 

1,, -= c j ~ q 3  
2g 

(5) 

where f~ is the viscous-layer damping function for which the 
established Launder and Sharma formula is preferred to alterna- 
tive expressions, because it depends only on the turbulence 
Reynolds number R t =- k 2 / p e ,  and its use avoids the problems of 
specifying wall distance in complex flows. 

 =expI l+  O,21 (6) 

Turbulence Modelling 

The q-~ eddy-viscosity model 

The variables in the q-~  model are defined as q ~ ~/k and its rate 
of destruction ~-= k /2q ,  where k is the so-called "isotropic 
dissipation" introduced by Jones and Launder (1972) in recogni- 
tion of the "decisive advantages" of a dependent variable which 
is zero at the wall. The accompanying drawback is the need to 
calculate (Oq/Oxj) 2 in order to recover the true dissipation rate 

with A~ = 6.0 substituted for the Launder-Sharma value of 3.4 
so as to give the best results for channel and boundary-layer 
flows. For the time being the standard k - e  model constants 
Q I  = 1.44, Q 2  = 1.92 are used to give C~1 = 1.88, C~2 = 2.84, 
trq = 1.0, and ~r~ = ~r~ = 1.3. 

The q;-~o model 

When the temperature fluctuations are zero at a wall, the limit- 
ing variation of the variance 0 z is as y2. A linear variation is 
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clearly preferable on computational grounds, and for that reason, 
we define a new variable qo---~/ko whose equation is readily 
derived from the OS-equation as: 

Oqo 0 [ Oqo __=_~_ ~ Po /3o ot Oqo Oqo 
- -  - t o t - - - % q o t  -~ ~- (7) 

U~ Oxi Oxj ~ Oxj ] 2qo 2qo qo Oxj Oxj 

where: 

as: 

ogo 
E - -  c3x i 

ot + ~ + (2Colfo 1 - 1) qo QogO 

+ 2Cozfoz~Qo + 2c03 fo3~°Q - (2co4fo 4 - 1) 
q q 

× ~°~o - 2 C o 5 f o 5 ~ o  + t~; (14) 
qo q 

OT 
Po =- - u j O - -  and /3 0 =- ot 

OXj OXj OXj 
(8) 

If the variation near the wall of the fluctuating part of the 
temperature is: 

O = l~w + ay + by2 -}- cy3 -}- ... (9) 

where the wall value O~ and the coefficients a,b,c . . . .  are 
random functions of time, the dissipation rate at the wall is 
obtained as: 

/3 o ~ _ a 2 + 4a-~y + (4b 2 + ~ ) y 2  + ... 
Oy Oy 

(10) 

For the case O = O~ = 0 and y = 0, it is then easy to show that: 

Oqo Oqo 
~- 2a--~y + ... 

OXj OXj 2 
(11) 

and so, at any rate to first order, the total dissipation-rate term 
in the qo equation: 

2qo Oxj Oxj 

is zero and O(y) at the wall. We call this quantity ~o and derive 
a transport equation for it by transforming an established mod- 
elled /3o-equation of the following general form containing ther- 
mal and mechanical time scales: 

E m  o r + - - -  +ColfOl-£-oPo + C o 2 f o 2 ~ P  0 Ox i Oxj ~r~o ] Oxj ) 

/3 0 /3 0 /3 

+ C 0 3 f o a T P  - C04f04 k'--o/30 - C05f05 k-/30 -J- *o 

(12) 

The Cs and %0 are constants in the high-Reynolds-number 
form, and the f s  are low-Reynolds-number damping functions. 
The to-equation is obtained from: 

l ~ q o )  2qo Dt 2q 2 Dt 
(13) 

where Q ~ P / 2 q  and Qo ==- Po/2qo • We have used the received 
values of the eo-equation model constants as chosen by Nagano 
and Kim (1988) and Sommer et al. (1992): Co~ = 0.90, Co2 = 0, 
Co3 = 0.72, Co4 = 1.10, Co5 = 0.80; ~rqo =ergo = 1.0. Guided by 
the precedent of the e or ~ equations, in which low-Reynolds- 
number damping is unnecessary in the production terms, we have 
followed the example of Sommer et al. (1992) in setting fol, fo2, 
and fo3 all equal to unity. In the e or ~ equations, the dissipa- 
tion term damping function is chosen to reproduce the decay of 
grid turbulence in the final period. The decay of heated grid 
turbulence is a vexed subject; the observed decay of O 2 cannot be 
fitted by simple relationships of the sort that suffice for k. And 
since the inclusion of a final period decay term has little effect 
on near-wall calculations of the velocity field anyway, we are 
content to omit them in the qo-~o model and put f04 =f05 = 1.0. 

The low-Reynolds-number treatment is then confined to 
damping the eddy-diffusivity coefficient and specifying the term 
0~ in Equation 14. In a straightforward formulation of the type 
a t cc q2t*, the time scale t* is conventionally formed from the 
mechanical and thermal scales, t=-q/2g, t o ---qo/2go. Thus, 
Elghobashi and Launder (1983), in their study of the develop- 
ment of a thermal mixing layer, used an eeo-equation involving 
the composite scale t* --- v/(tto). Dakos and Gibson (1993) de- 
duced t* = (1/ t  + 1/to)-1 from measurements in homogeneous 
turbulence with temperature gradient. Abe et al. (1995) present 
persuasive arguments for a hybrid scale on these lines: 

±=if! cm)l(R+Cm 1 
t* 2 ~ t  + "-~-o = t ~ ]  (15) 

where R--- to/ t .  Constant Cm is set equal to 0.5 so as to give 
Pr t = 0.9 in the logarithmic wall layer. The eddy-diffusivity is 
then expressed as: 

C q3 [ 2R 
at= ~fx~-~ ~ ]  (16) 

with C A = 0.10. 
There are widely recognised advantages in avoiding the use of 

the distance from the wall in formulating the damping function. 
Thus the Launder and Sharma (1974) Reynolds number function 
retains its popularity despite its recognised failure to capture any 
pressure-reflection effect or to conform precisely to limiting 
conditions at the wall. It turns out, however, that this sort of 
function alone just does not work for the temperature field, and 
we have had to fall back on a y-dependent function for the time 
being. The form devised and tested by Abe et al. (1995): 

fx = [1 - exp( - ~--~)] [1 - exp( Pr l j :Y* ) ]  (17) 

where y* =-Y/~I, and Xl is the Kolmogorov scale (v3//3) 1/4. For 
the remaining source term in Equation 14: 

otott(1--fx) ( 02T ] (  027" t 

~'~ - 2qo ~ Oxj Ox k ] [ Oxj Ox k ] (18) 
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This expression, from Nagano et al. (1994), has half the strength 
of the equivalent term in the E-equation, and the inclusion of fx 
ensures that it falls quickly to negligible levels outside the viscous 
layers. 

The model has been calibrated with the aid of direct simula- 
tions of channel flow, and it has been found to give generally 
good results for heat transfer through boundary layers in zero 
and positive pressure gradients. Figures 1-3 show predictions of 
the mean and rms temperature profiles, and that of the tempera- 
ture flux v--~, which agree closely with the DNS results of Kasagi 
et al. (1992) for fully developed channel flow at low Reynolds 
number. 

T h e  i m p i n g i n g  j e t  

The q-~  and qo-~o models have been used to calculate the 
impinging jet studied experimentally by Cooper et al. (1993) and 
as a test case for turbulence models by Craft et al. (1993). Use 
has also been made of the heat transfer data acquired by Baughn 
and Shimizu (1989) and Baughn et al. (1992). The flow arrange- 
ment is shown in Figure 4. A turbulent air jet emerges with mean 
velocity U B from a pipe of (internal) diameter D to impinge at 
right angles on a heated plane positioned a distance H =  2D 
below. In the two experiments reported, of diameters of 26 and 
101.5 mm were used. In each case, the flow in the jet exit plane 
was fully developed, and the Reynolds number U B D / v  = 23,000. 
Hot-wire measurements of mean flow and turbulence quantities 
extended to radial distances up to 9D. Baughn and Shimizu and 
Baughn et al. obtained heat transfer data from similar experi- 
ments with a heated plate. 

The computational domain shown in Figure 4 extended 10D 
in the radial r-direction and 2.5D in the y-direction normal to 
the plate. Fully developed pipe flow was assumed in the jet exit 
plane with conditions obtained from a separate calculation. On 
the entrainment boundaries in the r- and y-directions, the mean 
velocity normal to the boundary was calculated from the continu- 
ity condition on the assumption of constant static pressure. 
Turbulence quantities q and ~ were assigned zero values on 
these boundaries in regions of inward flow. In outflow regions, 
zero-gradient conditions were applied. Standard numerical meth- 
ods were used with coordinate-based grids, staggered for velocity 
and pressure, hybrid differencing, and pressure correction using 
the SIMPLE algorithm. To ensure grid-independent results, cal- 
culations were performed on several grids consisting of up to 112 
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and 186 nodes in the y- and r-directions, respectively, with high 
nodal concentrations at the jet pipe wall in the exit plane, in the 
stagnation zone, and in the near-wall low-Reynolds-number re- 
gion. The first near-wall nodes were located in the sublayer, 
typically at y += 1. 

Comparative calculations with the q-~ and k - e  models were 
made on the same computational grid, starting from the same 
initial conditions. We were less concerned in these calculations 
to demonstrate the superior computational efficiency of the q-~  
model than to effect the comparison under the same conditions. 
It was convenient to use for the q-~  calculations the grid refined 
to achieve grid-independent solutions with the k - e  model. Ques- 
tions of grid optimisation and computational efficiency are dealt 
with by Harper (1995) in connexion with the flows over back- 
ward-facing steps. In those calculations, grid-independent solu- 
tions with the q-~  model were obtained with roughly 30% fewer 
nodes than were needed for the k - e  model. Furthermore, q-~ 
calculations tend always to be more stable and less sensitive to 
initial conditions. A relatively rapid convergence rate levels out 
so that for good accuracy, overall rates of convergence are 
approximately the same in each case. The gains in efficiency, 
though well worth having, are significantly less than the 50% 
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Figure 4 The imping ing jet  and solut ion domain  

savings in CPU time reported by Gibson and Dafa'Alla (1995) for 
channel and boundary-layer flows. 

Results 

The region of interest is the flow in the vicinity of the stagnation 
point; the published profile measurements did not extend beyond 
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r = 3D. Figure 5 shows that mean velocity distributions near the 
stagnation point are quite accurately predicted by both the q-~ 
and Launder-Sharma k - e  models, but that the accuracy of the 
latter deteriorates with increasing radial distance. Measured and 
predicted values of the radial wall jet thickness are compared in 
Figure 6. Here Y~/2 is defined as the distance from the wall to 
the point in the outer flow where the velocity is one half of the 
maximum value. In this case, the growth rate is significantly 
underestimated in the q-~  model calculations; the k - e  model 
gives approximately the right spreading rate in the far field but 
returns excessive thickness near the origin. 

Figure 7 shows differences in the measured and calculated 
shear-stress profiles which would be surprising had we not seen 
similar results obtained by Craft et al. (1993) using the k - e  
model. Craft et al. attributed the discrepancy to excessive turbu- 
lence production calculated in the vicinity of the stagnation 
point. We concur with this diagnosis and have verified that this 
fault is to some extent cured by the Yap (1978) correction. This 
useful "fix" limits the growth of the turbulence length scale by 
introducing the following wall-dependent source term in the 
e-equation (or its equivalent in the E-equation): 

(19) 
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In local-equilibrium wall turbulence l = cry and S~ = 0. Craft 
et al. (1993) have shown that the Yap correction effectively 
halves the calculated heat transfer rate at the stagnation point, 
from Nu- Re - °Tpr  -°4  --- 0.32 to 0.16 approximately, when it is 
used with a Reynolds-stress closure. The Nusselt number distri- 
butions presented in Figure 8 show that much the safne result is 
obtained from the qo-go heat-transfer model. The continuous 
line shows the results obtained when the q -g  low-Reynolds 
number model is associated with a constant turbulent Prandtl 
number of 0.91. In the % - g o  model calculations shown by the 
dashed line Pr t is recovered as an output from the calculations. 
The third curve on Figure 8 shows the combined effects of the 
Yap correction and the qo-go model. The effect of the qo-go 
model is to deliver low turbulent diffusivities and high turbulent 
Prandtl numbers in the neighbourhood of the stagnation point, 
as is shown in the Pr t distributions displayed in Figure 9. To 
some extent, this result is accounted for by the choice of damp- 
ing functions because, while fx --* 0 as y ~ 0, f~ is non-zero at 
the wall. Away from the wall however, high values of Pr t are 
obtained, because small temperature time scales are recovered 
from the %-  and Co-equations. The limiting behaviour for t* 
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Figure 7 
r / D =  1.0; (c) r / D =  2.5; (d) r / D =  3.0; 

Imp ing ing  jet:  p ro f i les  of t he  t u r b u l e n t  shear  st ress:  o o o m e a s u r e m e n t s  (Cooper  et al. 1993);  (a) r / D = O . 5 ;  (b) 
ca l cu la ted  ( q -~  model) ;  . . . .  ca l cu la ted  ( k - s  mode l )  

Int. J. Heat and Fluid Flow, Vol. 18, No. 1, February 1997 85 



Impinging-jet calculation with the q-~ model: M. M. Gibson and R. D. Harper 

0.4  
' ' ' ' I . . . .  I . . . .  I . . . .  I . . . .  

,, 0.3 ~ o  oo 
0.2 

0 -~o"-,- 
0 . t  

o o o o 

0 . . . .  I , i a i I i i b i I , , , , I , , , , 

0 I 2 3 4 5 

r I D  

Figure  8 Impinging jet: hea t  t ransfer  along the  plate: o o o 
m e a s u r e m e n t s  (Baughn and Shimizu 1989); calculations: 
- - ( q - ~  model,  Pr t=0.91) ;  . . . .  (q - t0  and qo-~o models), 
. . . .  (q-~ model with Yap correct ion and qo-~0 model) 

(Equation 15) is t* ~ 2t as t o ~ ~; t* ~ 4t o ---, 0 as t o ---, 0. The 
results may be compared with those of Craft et al. who, using a 
Reynolds-stress closure for the velocity field, uniform Prt, and 
the Yap correction, managed to reproduce the secondary maxi- 
mum shown by the data points at x = 2D. 

Conclus ions  

Calculations on the q-~ low-Reynolds-number eddy-viscosity 
model give marginally better results than the corresponding k - e  
model but also retain the deficiencies previously noted by Craft 
et al. (1993) with respect to impinging jet, the most important of 
which is the excessive turbulence-energy level calculated in the 
approach flow to the wall. High levels of k of q are associated 
with high shear-stress levels which then produce excessive wall-jet 
growth rates, at any rate in the near field where the measure- 
ments were made. Use of the equivalent qo-~o model for heat 
transfer produced dramatic improvements in the stagnation-point 
Nusselt number, partly because of slight inconsistency in the 
specification of the low-Reynolds number diffusivity damping 
function in the qo-£o model (a defect to be remedied in further 
calculations) and partly because it seems that broadly correct 
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Figure 9 Impinging jet: turbulent Prandtt number in the 
vicinity of the  s tagnat ion  point calculated with the  q-~ and 
qo-~o models 

values of qo and to  are delivered by the modelled transport 
equations, although we have no experimental data to support this 
assertion. 
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